摘要
潜在行为预测即理解特定群体潜在的人类行为,可辅助组织做出战略决策。信息技术的进步使获取人类行为的庞大数据成为可能。本文将真实场景中获取的人类行为数据构建成信息网络;该信息网络由2种对象(人和动作)和3种关系(人—人、人—动作和动作—动作)组成,称作异构行为网络(HBN)。为充分利用异构行为网络的丰富性和异构性,提出一种网络嵌入方法,称作人—行为—属性感知的异构网络嵌入(a4HNE);该方法综合考虑网络结构邻近性、节点属性相似性和异构性融合。在两个真实数据集上的实验结果表明,该方法在各种异构信息网络挖掘任务中的潜在行为预测性能优于其他同类方法。
- 单位