摘要

论文从推荐系统中知识推荐算法的核心——产品属性与用户需求的匹配出发,首先探讨了如何采用形式化的Vague集语言描述用户的需求和产品的属性问题。之后分别运用用户兴趣度模型和产品特征模型搭建了用户需求和产品属性的Vague集模型。在模型融合的过程中采用Vague集理论中成熟的相似度计算公式,实现了用户需求与产品属性的匹配计算。最后,从爱奇艺中任意提取了5名注册用户和5部2019年新上映的电影,按照搭建的模型进行了数据计算,得到了可靠的计算结果,同时也构造了用户和产品之间的知识库,为后期知识推荐规则的形成奠定了基础。

  • 单位
    周口师范学院; 河南财经政法大学