摘要

铁矿石是非常重要的矿产资源,它的开发利用对钢铁产业的发展有很大的影响,铁矿石的选检与分类是冶金行业必不可少的环节,不同种类的铁矿石及其品质会直接影响与其他物质的配比,因此对铁矿石的选检分类研究在冶金行业具有重要意义。激光诱导击穿光谱技术(LIBS)是近年来发展起来的一项成分检测技术,具有无损、快速、原位在线检测等优点,在化学成分检测及样品分类领域有一定的优势。为了提高铁矿石的分类精度,提出将激光诱导击穿光谱技术与机器学习相结合对赤铁矿、褐铁矿、菱铁矿、云母赤铁矿、磁铁矿、磁赤铁矿、鲕状赤铁矿、黄铁矿、钴磁铁矿、磁黄铁矿等10种天然铁矿石进行分类研究。在研究中,首先通过激光诱导击穿光谱技术烧蚀10种天然铁矿石样品获得其对应的光谱数据;然后通过设定阈值的方法选定最大光谱强度对应的10个光谱特征;最后通过KNN、RF、SVM机器学习模型对选定的特征光谱进行分类训练及测试。结果表明:KNN、RF、SVM三种机器学习模型的分类准确度分别为83.0%、80.7%、90.3%。从分类准确度可以看出,激光诱导击穿光谱技术与机器学习相结合可以实现对铁矿石的快速、精确分类,这将为冶金行业的铁矿石选检分类提供一种全新的方法。