摘要

针对卷积层和池化层的局部性,提出了一种CNN与RNN的联合架构.通过使用一个无监督的神经语言模型训练初始词嵌入,然后使用网络的预训练参数对模型进行初始化;将信息通过卷积层进行特征映射以及通过长短时记忆模型学习长期依赖关系;通过轻微的超参数调优和词向量,在句子级文本情感分类中取得了出色的结果.使用循环层替代池化层来减少参数的数量以及卷积神经网络的复杂性.结果表明,该方法能够在减少本地信息丢失的同时,构建一个具有更少参数和更高性能的高效框架来捕获句子长期依赖关系.