基于特征提取与改进SVM的电价预测

作者:王婧骅; 王越; 徐子涵; 阎荷嫔; 陈冰旭
来源:自动化与仪器仪表, 2023, (03): 100-106.
DOI:10.14016/j.cnki.1001-9227.2023.03.100

摘要

针对传统电价预测方法由于冗余数据量庞大,特征选择和特征提取准确率低,导致电价预测精度低,预测时间过长的问题,提出构建基于DGCA-PCA的特征提取的改进DE-SVM的电价预测模型GGPDS。首先,采用考虑周期性特征的GCA算法和时段关联性特征的改进GCA算法进行电价特征数据选择;然后采用主成分分析PCA方法进行特征提取;之后将提取数据特征输入改进DE-SVM模型中进行电价预测。实验结果表明,提出的特征提取方法可对海量数据进行有效处理,为后续电价预测模型提供了准确的数据,并进一步提升了电价预测模型的预测精度,降低了模型训练时间成本。日预测实验结果中,本模型的MAPE指标和MAE指标分别取值为7.44%和3.71,对比于传统的电价预测方法电价预测误差更小,预测精度更高。由此说明,本模型可提升电价数据特征提取准确率,从而提高电价预测精度,可在短时间内实现电价准确预测。

  • 单位
    国网上海市电力公司

全文