摘要

在具有不同Pareto前沿形状的优化问题上,基于参考点的高维多目标进化算法表现出较差的通用性.为了解决这个问题,提出参考点自适应调整下评价指标驱动的高维多目标进化算法(Many-objective evolutionary algorithm driven by evaluation indicator under adaptive reference point adjustment, MaOEA-IAR). MaOEA-IAR提出Pareto前沿形状监测基础上的参考点自适应策略,利用该策略选择一组候选解作为初始参考点;然后通过曲线参数对参考点位置进行调整;将最终得到的能够适应不同Pareto前沿的参考点用于计算增强的反世代距离指标,基于指标值设计适应度函数作为选择标准.实验证明提出的算法在处理各种Pareto前沿形状的优化问题时能获得较好的性能,算法通用性高.