摘要
针对旅行商问题(travel salesman problem, TSP),基于群智能优化算法的人工蜂群算法(artificial bee colony, ABC)可以较为有效地解决并规划出一条合理的路线。ABC算法的优点在于将优化求解的过程转化为模仿蜂群采蜜的仿生行为,容易求得可行解。但是该算法依然存在着种群数量过多、速度较慢的缺点。分析了ABC算法的模型并对更新策略进行了改进,在ABC算法得到初始解的路径点后再使用A-star算法进行优化,通过将两种算法组合的方式进行改进。实验证明在解决TSP的路径规划中,整体的路径表现更优,且减少了冗杂的迭代更新,提升了算法的效果。
- 单位