提出一种基于完备总体经验模态分解(CEEMD)和模糊熵的随机森林(RF)风力发电功率预测模型。利用CEEMD将目标序列细分为若干子序列,放大输入变量波动对最终输出结果的影响。以模糊熵值大小作为重组的评判指标,将复杂程度相近的子序列重新组合成为若干新序列。再针对不同波动属性的序列建立随机森林模型并进行模型参数优化。实证分析表明推荐模型在选取数据集中具有更好的预测能力,从而验证了该方法在风力发电功率预测领域的可行性和有效性。