摘要

针对传统容积卡尔曼滤波算法在进行车辆关键状态估计时要求噪声统计特性已知的问题,提出一种噪声自适应容积卡尔曼滤波(Noise adaptive cubature Kalman filter, NACKF)算法来进行车辆关键状态的估计。基于次优无偏极大后验估计器对量测噪声协方差进行实时更新并将其嵌入到标准容积卡尔曼算法中实现自适应容积卡尔曼滤波。针对车辆不同子系统间耦合特性对滤波精度的影响,构建双重自适应容积卡尔曼滤波器分别进行侧向力与质心侧偏角的估计,两者在估计过程中互为输入构成闭环反馈,利用分布式模块化结构弱化系统耦合特性对估计精度的影响,实现轮胎侧向力与质心侧偏角的实时准确估计。利用Simulink-Carsim联合仿真平台进行仿真验证和实车试验验证。结果表明,基于双重自适应容积卡尔曼滤波的估计算法相对标准容积卡尔曼滤波估计精度更高,较好地改善了传统容积卡尔曼滤波器在噪声先验统计特性未知条件下非线性滤波精度下降的问题。