融合多特征的语音情感识别方法

作者:王怡; 王黎明*; 柴玉梅*
来源:小型微型计算机系统, 2022, 43(06): 1232-1239.
DOI:10.20009/j.cnki.21-1106/TP.2020-1053

摘要

语音情感识别已经成为下一代人机交互技术的重要组成部分,从语音信号中提取与情感相关的特征是语音情感识别的重要挑战.针对单一特征在情感识别中准确度不高的问题,该文提出了特征级-决策级融合的方法融合声学特征和语义特征进行情感识别.首先提取声学特征,包括:1)低层次手工特征集,包括基于谱相关、音质、能量、基频等相关特征,以及基于低层次特征的高级统计特征;2)DNN提取的谱相关特征的深度特征;3)CNN提取的基于Filter_bank特征的深度特征.并且使用基于Listen-Attend-Spell(LAS)模型的语音识别模块提取语义特征.然后将声学特征中的3类特征与语义特征进行特征级融合,在确定融合特征的先后顺序时引入了构造哈夫曼树的方法.最后得到融合后特征和原始4类特征各自的情感识别结果,在结果之上进行决策级融合,使用此方法在IEMOCAP数据集中分类准确度可达76.2%.