摘要

针对目标散乱堆叠场景下的机器人分拣问题,建立一种从目标筛选、识别到6D位姿估计的无序分拣系统。利用局部凸性连接方法将Kinect V2相机采集的堆叠散乱目标点云数据分割成单独的点云子集,定义抓取分数从中筛选出最上层未被遮挡的目标作为待抓取目标,保证机器人分拣目标时能从上至下进行抓取;针对不同种类目标的分拣需求,基于匹配相似度函数对三维目标进行识别并定位抓取点;融合截断最小二乘-半定松弛算法和最近点迭代算法,建立目标6D位姿估计模型,保证目标点云和模型点云重合率低情况下的精确配准。在自采数据上进行目标6D位姿估计实验以及机器人无序分拣实验,结果表明:提出的6D位姿估计方法相较于流行的几种方法,可以更快速、精确地获取目标的6D位姿,均方根距离误差<3.3 mm,均方根角度误差<5.6°;视觉处理时间远小于机械臂运动的时间,在实际场景中实现了机器人实时抓取的全过程。