摘要

针对视觉伺服控制识别速度慢、精度低的问题,提出一种基于反向传播(BP)神经网络和遗传算法的视觉伺服控制算法。该算法对机器人与图象复合雅可比矩阵建模得到初始的BP神经网络视觉伺服控制器,采用遗传算法对控制器的初始权重和阈值进行训练,得到混合优化的视觉控制模型。该算法可以有效地将遗传算法良好的全局搜索能力与BP神经网络的精确局部搜索功能相结合。实验结果表明,收敛速度加快的同时误差下降为原来的4.6%,为机器人控制提供了一种简单有效的方法。