摘要
针对光伏发电功率时间序列随机性和波动性强的特点,提出一种基于Kmeans和完备总体经验模态分解(CEEMD)、排列熵(PE)、长短期记忆(LSTM)神经网络结合的短期光伏功率预测模型。先通过Kmeans算法选出预测日的相似日;然后采用CEEMD将发电功率和影响因素数据的原始序列分解为多个固有模态分量,并用排列熵算法对模态分量进行重构;最后对重构后的子序列分别进行LSTM建模预测,再将子序列预测结果叠加起来确定光伏发电功率预测值。试验结果表明,所提预测模型与单独的LSTM预测模型和EMD-PE-LSTM预测模型相比,功率预测精度明显提高,为电网调度提供了一定参考。
- 单位