摘要
珠海一号高光谱卫星具有高空间、高光谱、高时间分辨率等特点,有效推动了高光谱遥感数据在农林环境、自然资源探测等领域的广泛应用,其中高精准的云检测是遥感数据预处理的关键步骤。如何对高光谱图像有效特征提取并克服传统云检测方法特征复杂、算法参数多、计算量大、鲁棒性差等缺陷,是高光谱云检测研究的关键问题。为此,提出了一种多尺度特征融合的U型结构网络,模型首先利用残差模块进行特征编码,并将编码进行多尺度融合,在网络的跳跃连接处引入了坐标注意力机制提取有用信息,最后通过残差解码得到输出结果。实验前首先利用主成分分析降维,将高光谱数据重构为4维影像数据,然后通过数据标注与数据增强,建立珠海一号高光谱影像云检测数据集。采用了38-Cloud云数据集训练初始网络参数,随后利用构建的数据集进行迁移学习。实验结果表明,对于所建立的珠海一号高光谱云检测数据集,所提方法的像素准确率达到92.28%,可以实现高精度的高光谱遥感影像云检测。
-
单位中国科学院大学; 中科院上海技术物理研究所