摘要
为解决煤矿微震事件识别中效率低、精度低、可靠性差的问题,将小波散射分解变换与支持向量机相结合,构建微震事件的WSD-SVM智能识别模型。首先,通过小波散射分解变换将微震监测数据分解成高、低频部分,并计算得到小波散射系数,构成散射特征矩阵;然后,选择70%的数据输入支持向量机模型进行训练,用得到的识别模型对其余30%的数据进行测试验证,获得识别结果。将山西保德煤矿某工作面微震监测时序数据作为实例,结果表明:WSD-SVM模型能够自动识别全部6个微震事件,用时1.651 s;而传统STA/LTA算法虽然仅用时0.731 s,但未能有效识别出其中的3个低信噪比事件,WSD-SVM模型的自动识别精度高于STA/LTA算法模型识别的精度,但需要较长的计算时长。小波散射分解变换方法的引入能够有效实现监测数据降维,大幅提高识别精度,为微震事件的自动识别提供了新思路。
- 单位