基于CSPA-Informer的滚动轴承剩余寿命预测

作者:颜家威; 易灿灿; 黄涛; 肖涵
来源:组合机床与自动化加工技术, 2023, (10): 85-90.
DOI:10.13462/j.cnki.mmtamt.2023.10.019

摘要

针对传统的滚动轴承剩余使用寿命预测精度低、计算效率低等问题,提出了一种基于改进Informer深度学习模型结构的滚动轴承剩余使用寿命预测方法。为解决现有Informer模型中的self-attention结构存在内存占用高、计算复杂度高等问题,提出CSPA结构对输入数据进行处理,大幅度减少内存占用,提升计算效率的同时提高计算精度。因此,将CSPA替换原Informer模型中的self-attention结构,提出了基于CSPA-Informer的滚动轴承剩余寿命预测方法。输入数据分为两个通道进行特征提取和线性投影,并通过解码器快速生成预测序列。将CSPA-Informer与其他预测模型在公开数据集上的预测结果进行对比,其MAE、MSE和RMSE分别提升了21%、32%和17%以上,验证了该方法在滚动轴承剩余寿命预测方面的有效性。

全文