摘要
针对叶片在服役过程中缺陷特征提取困难,提出一种基于变分模态能量熵结合BP神经网络的叶片缺陷诊断方法。首先对声发射信号进行变分模态分解,通过方差贡献率筛选不同缺陷的主要模态分量,之后求取不同缺陷主要模态分量的能量熵构造不同缺陷的特征向量。为验证特征向量选取的准确性,将不同缺陷能量熵向量输入BP神经网络进行缺陷模式识别。结果表明:缺陷识别正确率高达90%,表明变分模态能量熵结合BP神经网络的叶片缺陷诊断方法能够实现叶片早期缺陷识别,具有一定的应用价值。
-
单位兰州理工大学; 兰州兰石检测技术有限公司