摘要

针对服装形变和模特复杂姿态影响服装视觉分析准确率的问题,提出一个基于混合域注意力机制的服装关键点定位与属性预测算法,该算法利用循环十字交叉注意力(recurrent criss-cross attention, RCCA)模块得到服装图像的每个像素的上下文信息,从而捕获服装关键点之间潜在的空间几何关系,再融合服装图像的空间联系和通道交互信息来获得更好的服装关键点定位和属性预测效果。服装的空间特征由空间注意力分支网络在关键点热图的基础上学习得到,而通道交互信息通过局部跨通道交互策略生成通道注意力来捕获。试验结果表明,所提算法降低了服装关键点定位的归一化误差,并在一定程度上提高了服装的分类与属性预测效果。

全文