摘要
现有的图像去雾算法,只采用了清晰图像来指导去雾网络的训练,而没有利用模糊图像,从而造成去雾不彻底,细节信息不完整的问题。为此提出了一种对比正则化的方法,利用模糊图像和清晰图像共同指导去雾网络的训练。对比正则化保证恢复后的图像信息向清晰图像方向靠近,远离模糊图像的方向。此外提出一种新的金字塔通道的特征自适应融合网络。该网络包含3个部分:三尺度特征提取网络、特征自适应混合模块(PCFM)和图像重建模块。三尺度特征提取模块同时捕捉不同尺度特征。金字塔结构和特征自适应融合操作,有效地提取相互依赖地特征,并以金字塔的方式有选择性地聚集更重要的特征。图像重建模块用于重建特征,恢复清晰的图像。实验结果表明,与现有的经典去雾算法相比,客观评价指标:峰值信噪比(PSNR)和结构相似性(SSIM)都得到了提升,并改善了去雾不彻底和颜色失真的现象。
- 单位