基于梯度增强回归树(GBRT)的方法建立打浆度预测模型。采集实际工业环境中磨浆过程变量(如流量,纸浆浓度和磨浆机功率)和原料性质,包括原料纤维形态和浆料性质作为模型输入,所有输入变量数据来源于造纸厂。在实时数据上检验模型精度,均方误差为RMSEk=0.9948。对比支持向量机(SVM)打浆度模型,GBRT打浆度模型时间复杂度更低。