摘要
热轧卷板边部缺陷对终端产品质量有着极为重要的影响,传统轧钢工艺缺陷的检查多依靠人工,其高温、连续的生产环境严重阻碍了人工在线检测的准确率。为完成对热轧钢卷边部各种缺陷的高效检测,建立了热轧钢卷缺陷数据集,数据集包括分层、烂边以及正常钢卷样本3种,基于卷积神经网络原理,开发了卷板边部缺陷在线智能识别模型。人工标定和训练优化结果表明:训练集的损失函数值为1.163%,测试集的损失函数值为0.781%,训练集和测试集准确率分别达到了98.9%和99.0%。测试集的损失函数值低于训练集,但准确率高于训练集,表明损失函数的值越小,准确率越高,训练出来的模型越好。将其应用于现场实际的钢卷边部缺陷识别中,智能缺陷识别结果较为准确,可以证明该模型具有很高的缺陷识别能力,满足了轧钢卷板边部质量控制的工艺需求。模型的开发对降低制造成本、确保生产安全以及提升产品质量都具有重要的意义。
- 单位