摘要

当前视觉即时定位与地图重构技术(SLAM)的过程中,通常采用随机采样一致性(RANSAC)的图像特征匹配算法,随机估计图像模型容易造成算法时间复杂度不确定,进而导致图像匹配时耗过大,难以满足视觉SLAM实时性的要求。为了改善这一问题,使用渐进采样一致性(PROSAC)的算法对图像特征进行筛选,剔除误匹配特征点,有效改善了图像特征匹配的效率与鲁棒性,进一步增强了视觉SLAM的稳定性与实时性。试验验证表明,相比于当前视觉SLAM特征匹配算法,计算效率明显提升。