摘要

在中国华北地区,二氧化氮污染仍旧不容忽视,尤其是在机动车辆密集和工业生产相对集中的京津冀城市群。运用小波分解(WD)和长短期记忆(LSTM)神经网络建立了W-LSTM组合模型,用于预测未来京津冀地区二氧化氮日均浓度和分指数。使用2014年1月—2018年5月主要大气污染物数据对组合预测模型进行训练试验,在获得最优模型参数后,使用2018年6月—2019年6月数据进行模型预测性能测试试验。结果表明,相较于传统的LSTM预测模型,W-LSTM组合预测模型具有更好的预测性能,预测结果的平均绝对百分误差为9.21%。在此基础上,使用最优预测模型对京津冀城市群2019年7月—2020年12月二氧化氮日均浓度进行了预测,并描绘了时空分布图用以表征其时空变化特征。

全文