摘要

为解决道路电动车骑行人员头盔佩戴检测能力缺失的问题,设计了一种基于神经网络的头盔佩戴识别系统,采用改进型YOLOV3算法,在主网络后增加残差结构提高了位置与类别的识别精度,同时设计了GUI应用界面,便于应用测试。实验结果表明,在稀疏和中等密度道路场景下,头盔佩戴的平均识别准确度(mAP)大于90%,在单人场景下mAP大于95%,较传统神经网络算法在精度上有较大提升,为非机动车骑行人员头盔佩戴的自动化识别提供了一个可行的途径,具有较好的应用前景。