当被识别系统是稀疏系统时,传统的遗漏最小均方(LLMS)自适应算法收敛性能较差,特别在非高斯噪声环境中,该算法性能进一步恶化甚至算法不平稳收敛。为了解决因信道的稀疏性使算法收敛变慢的问题,对LLMS算法的代价函数分别利用加权1-norm和加权零吸引两种稀疏惩罚项进行改进;为了优化算法的抗冲激干扰的性能,利用符号函数对已改进的算法迭代式作进一步改进。同时,将提出的两个算法运用于非高斯噪声环境下的稀疏系统识别,仿真结果显示提出的算法性能优于现存的同类稀疏算法。