摘要
具有复杂纹理的多晶硅晶片颜色差异检测是太阳能电池片制造过程中的一个挑战。针对传统的色差检测算法不适用于颜色差异类别变化大的场合,且分类结果不精确的问题,基于不同分量的颜色特征提出了一种多分量卷积神经网络的检测算法。通过分析多晶硅晶片图像在HSV颜色空间的特征分布,发现颜色特征在H、S和V分量中表现不同;基于全卷积神经网络,通过评估模型深度和卷积核尺寸大小对检测结果的影响来搭建最佳的网络结构;为了增强对不同颜色差异特征的区分能力,基于最佳的网络模型,构建了一个多分量的卷积神经网络模型。实验结果表明,多分量卷积神经网络的准确率、MCC值和F1Score值分别为92.28%、95.45%和94.03%,相比其他算法具有更高的检测精度。
- 单位