摘要
为解决传统樽海鞘群算法(SSA)收敛精度低、难以跳出局部最优等问题,提出了一种多策略融合的改进樽海鞘群算法(ISSA)。首先,提出了一种新的融合中垂线算法收敛策略的追随者位置更新方法,以解决传统SSA追随者位置更新方法的不足;为提升SSA跳出局部最优的能力,提出一种基于中垂线算法收敛策略的自扰动策略。其次,通过分析传统SSA领导者位置更新策略存在的不足,提出了一种新的领导者位置更新策略,并针对SSA的固定种群顺序,提出了以适应度为指标重构樽海鞘群体排列顺序的方法以提升算法性能。最后以仿真实验对ISSA的性能进行了验证,结果表明ISSA解决了SSA收敛精度低和难以跳出局部最优的问题,提升了SSA的收敛速度和稳定性。通过与其他改进SSA的对比实验,证明了ISSA的优越性。
- 单位