摘要

针对非线性动态系统的扩张状态观测器(ESO)参数整定问题,建立了基于BP神经网络的参数整定模型。采用在线梯度下降法进行网络训练以保证对动态系统的学习能力,并引入了IDBD算法,利用输入数据的信息和学习过程中的经验实现学习速率的自适应调整,以改进在线梯度下降法的适应性。数字仿真表明,该参数整定模型较传统的参数整定模型具有动态性能好、精度高等优点,能够提高非线性系统扩张状态观测器参数的动态整定精度,进而在一定程度上改善自抗扰控制器的系统控制性能。

  • 单位
    中国航空工业集团公司洛阳电光设备研究所; 光电控制技术重点实验室; 北京理工大学