摘要

旋转机械中的滚动轴承常工作在变负荷、强噪声的环境中,而传统的滚动轴承故障诊断方法难以在复杂工况下自适应地提取对其故障诊断有利的特征,针对此问题,提出一种改进AlexNet的滚动轴承变工况故障诊断方法。首先,将采集的一维时域信号按横向插样构建便于改进AlexNet输入的二维特征图,于现存的纵向插样和二维频谱而言,保留了特征自动提取过程中振动信号的时序性和关联性;其次,改进调整AlexNet卷积层的功能层且经过卷积和次采样等操作,从二维特征图中自动提取出利于滚动轴承状态辨识的特征;最后,以softmax的交叉熵为损失函数,利用Adam按小批量迭代优化法实现对滚动轴承故障的诊断。通过与多种方法对滚动轴承不同位置、不同损伤程度的12类状态诊断效果比较,结果表明,该方法对变负荷、强噪声条件下的滚动轴承故障诊断的精度更高,鲁棒性更强。