针对Apriori算法存在效率低、内存损耗大等问题,提出一种基于遗传算法来寻找频繁项集的(GNA)算法。结合Apriori算法和遗传算法的特点,设计k步挖掘过程,利用交叉算子产生候选项集和变异算子筛选频繁项集,避免多次扫描数据库的同时,减少冗余。实验结果表明,GNA算法相比Apriori算法,对稀疏数据集或稠密数据集,在挖掘频繁模式的数量及效率上都有显著提高。