摘要
为了改善传统车载激光雷达点云配准方法准确度低、计算速度慢的问题,提出了一种基于快速点特征直方图(fast point feature histograms, FPFH)初始匹配与改进迭代最近点(iterative closestpoint,ICP)精确配准相结合的改进FPFH-ICP配准算法。配准前使用体素滤波器和statistical-outlier-removal滤波器进行预处理;采用FPFH提取点云特征,基于采样一致性(sample consensus initial alignment, SAC-IA)进行初始配准,为精确配准提供良好的位姿信息;建立K-D树并在传统ICP配准算法的基础上添加法向量阈值,对车载激光雷达点云数据进行精确配准;在4种不同场景的实验中,改进FPFH-ICP配准比ICP配准的均方根误差和配准用时分别平均减少了7.56%和41.22%,比点特征直方图(point feature histograms, PFH)配准的均方根误差和配准用时分别平均减少了30.28%和18.95%,表明改进的FPFH-ICP能够对车载激光雷达点云数据实现精确且高效的配准。
- 单位