基于深度学习的MOOC论坛探索型对话识别方法研究

作者:董庆兴; 李华阳; 曹高辉*; 夏立新
来源:图书情报工作, 2019, 63(05): 92-99.
DOI:10.13266/j.issn.0252-3116.2019.05.011

摘要

[目的/意义]大规模在线开放课程论坛具有丰富的用户评论数据。从大量未区分的评论数据中,自动识别出知识密度较高的探索型对话并挖掘其潜在价值,对于改善教师教学质量以及提高学生知识水平具有重要影响。[方法/过程]首先利用GloVe方法训练词向量,加强对文本语义的理解,然后利用卷积神经网络自动学习文本特征,提出一种基于深度学习的探索型对话自动识别模型,并在学堂在线平台《心理学概论》课程论坛标注数据集上进行实证与对比研究。[结果/结论]实验结果显示,利用GloVe方法预训练词向量以及在训练过程中不断对词向量进行学习修正能够提高模型效果。该模型识别探索型对话的F1值为0.94,相较于传统的朴素贝叶斯方法(0.88)、逻辑斯谛回归方法(0.89)、决策树方法(0.88)以及随机森林方法(0.88)取得较大提升,具有较高的实用性和较低的学习成本。

全文