摘要
行星齿轮箱是风电机组传动系统中的重要部件,其故障发生率较高且难以直接识别故障情况,此外故障样本难以直接获取、样本环境噪声大等问题增加了故障诊断的难度。针对这些问题,提出基于贝叶斯优化及Wasserstein距离改进辅助分类生成对抗网络模型的齿轮箱故障诊断方法。首先,以辅助分类生成对抗网络为基础,针对振动信号时序特征构建一维卷积层替代二维卷积,提高信号特征提取效率;同时,在生成器和判别器中加入批归一化层和Dropout层,规范数据结构特征。然后,利用贝叶斯优化策略自适应调节判别器参数,提升判别器的性能,并引入Wasserstein距离改进模型的目标函数,通过博弈对抗机制同时优化生成器和判别器,显著提高模型的泛化能力和故障特征提取能力。设计行星齿轮箱在定速和变速运行下不同故障状态的实验,在不同非平衡样本集情况下,该方法可实现样本数据增强,并且保持良好的故障识别准确率,验证了该方法的先进性。
- 单位