摘要
在分布式视频编码(DVC)中,如何在各种运动场景下生成高质量的边信息并提升解码性能是一个重点研究领域。提出一种基于深度学习的光流插帧边信息生成算法(optical flow interpolation, OFI),编码端采用区间重叠的分布式算术编码(distributed arithmetic coding, DAC)对视频进行编码,解码端生成边信息时提取已解码关键帧,输入深度学习光流插帧网络。网络采用多层光流模块产生光流,并结合光流向后弯曲关键帧产生初步的边信息估计,再由融合过程消除遮挡产生更加细化的结果,最后边信息辅助解码树完成解码。实验结果表明,与现有方法相比,该方法PSNR最大可提升2.25 dB,主要体现在线性运动场景下。同时在线性和非线性场景下SSIM指标可提升0.001 5~0.064 8,在解码视频率失真曲线上也体现出一致的结果,证明了该算法对线性运动边信息估计有较好的提升,对非线性运动边信息结构也有良好的恢复性。
- 单位