摘要
车牌识别技术在交通管理中发挥着重要作用,其中车牌检测环节对后续识别性能有重大影响。现有的车牌检测系统容易受到外部环境的干扰,在自然场景下的检测性能差。提出一种基于多尺度注意力融合的车牌检测网络模型,利用金字塔网络特征图和CBAM(Convolutional Block Attention Module)注意力结构,提高小目标的检测精度。同时该方法不仅能够准确地检测定位出自然场景下的车牌,还能精确地定位出车牌的4个角点,有利于后续的车牌识别应用。实验中采用数据增强方法对CCPD数据集进行扩增,有效缓解了复杂环境变化对车牌检测造成的影响,增强了模型鲁棒性。通过对模型进行训练和测试,获得了98.05%的平均精确率和98.71%的召回率,优于其他车牌检测方法,并且帧率达到64 frame/s,实时性高。