摘要
目的 卷积神经网络由于具有在捕捉长距离依赖能上的缺陷,其限制了分割模型的进一步提升[1]。针对以往医学图像分割网络中卷积的感受野太小,对小型医学图像数据集训练参数非常多的深度网络容易过拟合问题,基于TransUnet网络模型结合ViT与Unet的特性对模型进行优化。方法 利用TransUnet与ResNet残差结构与注意力机制结合,在底层CNN模块引入注意力机制提取特征,引入残差结构加深算法,使用卷积操作代替混合编码器中的最大池化减少特征丢失,增大了卷积中的感受野,提高了脑胶质瘤图像的分割精度。结果 在BraTS比赛的数据集中对脑胶质瘤的分割Dice达到95.22%,较原TransUnet模型提升了2%。结论 研究基于TransUnet优化算法的脑肿瘤图像分割方法鲁棒性强。对现有的两种神经网络方法进行对比,均低于本文改进模型,表明对于医学图像的分割精度有提升。
- 单位