摘要

针对压制干扰环境下传统粒子滤波算法跟踪效果不佳的问题,在传统粒子滤波算法的基础之上,融合压制干扰条件下的有用量测信息,构造了一种新的粒子滤波算法。在算法的实现过程中,通过采用伯努利(Bernoulli)分布重新构造了压制干扰环境下发生量测数据丢失的传感器模型,在此基础上通过充分考虑有效量测值以及量测丢失时的一些有用量测信息,推导出了闪烁噪声条件下的似然函数,直接用于粒子权重更新的计算,并且通过纯方位跟踪以及协同转弯机动模型,仿真验证了该算法极大改善了标准粒子滤波算法的稳定性和提升了粒子滤波算法的估计精度。

  • 单位
    空军工程大学