摘要
目前传统的跨站脚本(XSS)检测技术大多使用机器学习方法,存在代码被恶意混淆导致可读性不高、特征提取不充分并且效率低等缺陷,从而导致检测性能不佳。针对上述问题,提出了使用双向长短时记忆网络检测跨站脚本攻击的方法。首先,对数据进行预处理,使用解码技术将跨站脚本代码还原到未编码状态,从而提高跨站脚本代码的可读性,再使用深度学习工具word2vec将解码后的代码转换为向量作为神经网络的输入;其次,使用双向长短时记忆网络双向学习跨站脚本攻击的抽象特征;最后,使用softmax分类器对学习到的抽象特征进行分类,同时使用dropout算法避免模型出现过拟合。对收集到的数据集进行实验,结果表明,与几种传统机器学习方法和深度学习方法相比,该检测方法表现出更优的检测性能。
- 单位