摘要

针对基于生物激励神经网络(Biologically Inspired Neural Network,BINN)算法的机器人路径存在重复率高、转弯次数多的问题,提出一种将模板模型与辐射扫描(Radiation Scanning,RS)算法相融合的改进遍历路径规划算法(Improved Traversal Path Planning Algorithm,ITPPA)。利用BINN算法制定无障碍物行走策略;设计多个避障路径模板,保证机器人有序的避开障碍物;利用RS算法引导机器人迅速逃离死区。仿真结果表明:与BINN算法相比,ITPPA能够有效降低路径重复率和转弯次数,同时帮助机器人快速逃离死区,降低机器人能耗,提高了工作效率。

全文