摘要

目的传统显著性检测模型大多利用手工选择的中低层特征和先验信息进行物体检测,其准确率和召回率较低,随着深度卷积神经网络的兴起,显著性检测得以快速发展。然而,现有显著性方法仍存在共性缺点,难以在复杂图像中均匀地突显整个物体的明确边界和内部区域,主要原因是缺乏足够且丰富的特征用于检测。方法在VGG(visual geometry group)模型的基础上进行改进,去掉最后的全连接层,采用跳层连接的方式用于像素级别的显著性预测,可以有效结合来自卷积神经网络不同卷积层的多尺度信息。此外,它能够在数据驱动的框架中结合高级语义信息和低层细节信息。为了有效地保留物体边界和内部区域的统一,采用全连接的条件随机场(conditional random field,CRF)模型对得到的显著性特征图进行调整。结果本文在6个广泛使用的公开数据集DUT-OMRON(Dalian University of Technology and OMRON Corporation)、ECSSD(extended complex scene saliency dataset)、SED2(segmentation evalution database 2)、HKU、PASCAL-S和SOD(salient objects dataset)上进行了测试,并就准确率—召回率(precision-recall,PR)曲线、F测度值(F-measure)、最大F测度值、加权F测度值和均方误差(mean absolute error,MAE)等性能评估指标与14种最先进且具有代表性的方法进行比较。结果显示,本文方法在6个数据集上的F测度值分别为0.696、0.876、0.797、0.868、0.772和0.785;最大F测度值分别为0.747、0.899、0.859、0.889、0.814和0.833;加权F测度值分别为0.656、0.854、0.772、0.844、0.732和0.762;MAE值分别为0.074、0.061、0.093、0.049、0.099和0.124。无论是前景和背景颜色相似的图像集,还是多物体的复杂图像集,本文方法的各项性能均接近最新研究成果,且优于大多数具有代表性的方法。结论本文方法对各种场景的图像显著性检测都具有较强的鲁棒性,同时可以使显著性物体的边界和内部区域更均匀,检测结果更准确。