本文主要研究分组数据分位数回归模型的变量选择和估计问题.为了充分反映数据的分组信息,需要假定每组数据的回归系数可以分解成共性部分和分组后的个性部分.为了进行变量筛选,本文提出分解系数的Lasso估计,并进一步提出了自适应Lasso估计.在处理相应优化问题时,采用了变换观测矩阵的方法简化问题求解.本文给出了自适应Lasso估计的Oracle性质证明,并且通过数值模拟研究展示了所提方法的有限样本表现.最后,将此方法应用到乳腺浸润癌致病基因的变量筛选上来展示所提方法的实际应用表现.