实时、准确地预测医院门诊量是医院解决目前医患矛盾的重要基础,然而传统医院门诊量无法正确地预测数据而揭示其时间序列内在规律,不能有效地调节治疗资源。提出一种基于长短记忆(LSTM)递归神经网络方法预测门诊时序,具体地说,对门诊时序初始数据进行归一化预处理,减少初始误差,然后将数据输入LSTM模型,解决LSTM过早地进入局部收敛点的问题。与传统BP神经网络模型进行比较,预测精度得到明显提高,更好地预测医院门诊流量随着时间变化的趋势。