摘要

基于像元基元、极化合成孔径雷达(Synthetic Aperture Radar,SAR)数据和传统机器学习算法的岩性分类方法,易受SAR图像固有斑点噪声影响,精度不高.为了降低噪声的影响,本研究以大尺度像元邻域为基元,用于表征地表地质体的遥感图像特征和岩性语义信息;采用高分三号双极化SAR数据进行极化分解构建3通道假彩色合成影像;然后采用深度卷积神经网络(Deep Convolutional Neural Network,DCNN)迁移学习的方法,提取有效的深度特征表示,分别实现5 m和15 m两种空间分辨率下岩性遥感自动分类.结果表明:基于不同分辨率数据和不同DCNN算法,岩性遥感自动分类的总精度均大于80%,最高精度达到91%.基于大尺度像元邻域和DCNN迁移学习方法,能够实现基于SAR数据的高精度岩性分类.