摘要

针对旋转机械故障信号具有非线性、非平稳性特点,提出一种基于小波包样本熵及GA-BP网络的故障识别方法。首先对故障信号进行小波包分解,计算重构节点信号能量较大的前4个子频带振动信号的样本熵作为特征向量;然后将特征向量输入GA-BP网络模型进行故障类型识别,并且与传统BP网络作对比。实验结果表明:转子实验台不同故障信号的小波包样本熵不同,该方法对转子故障区别度更有效果,故障识别率明显提高。