摘要
基于网络模型的推荐算法是当前推荐系统研究领域的热点,其中,基于资源扩散的推荐算法以"用户-物品"二部图为基础.然而,这类算法仅依靠用户和物品之间的选择关系和喜好程度确定资源扩散方式,并未考虑用户之间信任关系的强度.本文提出了一种融合信任关系的热传导和物质扩散混合推荐算法,首先借鉴社会心理学中人际信任产生的原理,从用户行为、用户上下文以及用户兴趣偏好3个方面,构建一个基于相似度的无向含权信任关系网络;然后生成"用户-用户-物品"双层网络,让资源在双层网络中按照权重比值进行扩散以实现个性化推荐;最后在MovieLens数据集上进行实验与比较.实验表明该算法对于推荐精确度和多样性都有一定程度的提升.
- 单位