针对大多数分数阶中立型随机时滞微分方程无法给出精确解的问题,给出了方程的一种数值解法.该方法首先将波形松弛方法推广到具有常延迟项的分数阶中立型随机微分方程,然后在分裂函数满足Lipschliz条件下证明了波形松弛方法在均方意义下收敛.数值模拟表明,波形松弛方法可用于求解分数阶中立型随机时滞微分方程.