摘要
配电网状态估计是配电管理系统的重要组成部分。用于状态估计的数据通常存在不同程度的随机噪声干扰,不能直接用于配电网的运行分析,为获得更为精确的配电网状态信息,必须对量测数据进行滤波处理。针对无迹卡尔曼滤波(Unscented Kalman Filter,UKF)灵活性差、滤波精度易受参数及滤波初值的制约;标准粒子滤波(Particle Filter,PF)选取重要性密度函数不合理的缺陷,文章将无迹粒子滤波(Unscented Particle Filter,UPF)算法应用于配电网状态估计。该算法将UKF和PF融合,用UKF结合最新的量测信息为PF生成重要性密度函数,将落在先验概率密度区域的粒子转移到高似然区域内,提高了PF的滤波性能。通过IEEE 33节点系统算例分析,结果表明,UPF较UKF和PF具有更好的估计性能,且灵活性强,是一种有效的状态估计方法。
- 单位