基于脑电功能连接拓扑表征的心算任务分类

作者:吴选昆; 颜延; 贾振华; 白雪丽; 王磊
来源:计算机应用研究, 2022, 39(02): 356-360.
DOI:10.19734/j.issn.1001-3695.2021.06.0267

摘要

使用脑网络图的方法分析脑电功能连接存在阈值选择、忽略了脑电图动力学特性的问题。针对这一问题,提出了一种使用拓扑动态建模的方法来分析脑电功能连接矩阵,以提高心算任务分类识别正确率。该方法首先将功能连接矩阵转换为无向加权图,然后使用持续同调工具来构建不同的复形,记录拓扑动态过程中形成的不同阶的同调特征,形成持续图,最后使用持续景观图特征作为分类特征,输入到随机森林分类器进行心算状态识别。在心算状态识别和心算质量分类两个任务中分别获得了最高99.26%、99.20%的识别准确率,97.87%、99.80%的敏感性,以及99.78%、97.64%的特异性,并且在跨个体验证实验中分别获得了66.81%、66.85%的准确率。实验结果表明,该方法能充分考虑所有可能的阈值,有效提取脑电功能连接的分类信息,实现脑电心算状态自动识别。

全文