摘要
[目的]以库布其沙漠沙柳为研究对象,建立基于BP神经网络的沙柳生物量模型,探究不同建模因子下的沙柳生物量估算模型变化,以期探究沙柳生物量估算模型的最优形式。[方法]选取6种沙柳生长因子,并根据与生物量相关性大小加入输入变量,从而组成6组不同输入变量,输入变量包含因子数量逐步增加(1~6种)。对比BP神经网络沙柳生物量模型不同输入变量所拟合模型的性能,确定最佳输入变量,并在最优输入变量的基础上,确定BP神经网络隐层数量,经过反复训练,建立基于BP神经网络的沙柳生物量估算模型。[结果]基于BP神经网络的沙柳生物量模型最优结构,即输入层节点数(Nin)∶隐层节点数(Nh)∶输出层节点数(Nout)为:4∶9∶1。其中训练数据R2=0.97,RMSE=0.67,MAE=0.50;测试数据R2=0.96,RMSE=1.10,MAE=0.77。[结论]基于BP神经网络的沙柳生物量,随着输入变量中输入因子的数量不断增加,发现其R2、RMSE、MAE所表现出的模型性能逐渐变好,但是输入变量每增加1种后,当输入因子数量为5时,模型精度相比输入因子数量为4时提升幅度较小,考虑模型使用时的精度和野外工作的便利性,输入层最优输入因子数为4种,当隐层数为9时模型性能表现为最优。
- 单位