传统基于性能势的学习算法能获得马尔可夫决策问题的最优策略。这些算法主要采用单路径采样的方法,使得学习算法效率不高。将性能势与强化学习相结合,提出了一种基于性能势的无折扣值迭代学习算法——G学习,并将其与经典的无折扣强化学习算法(R学习)相比较,获得了较好的实验结果。